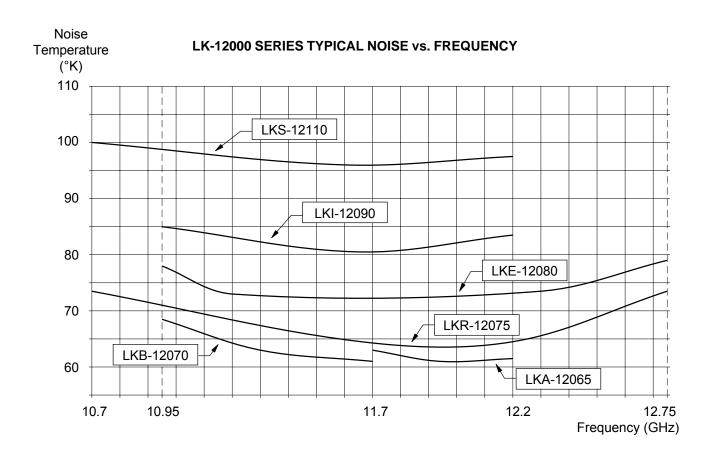


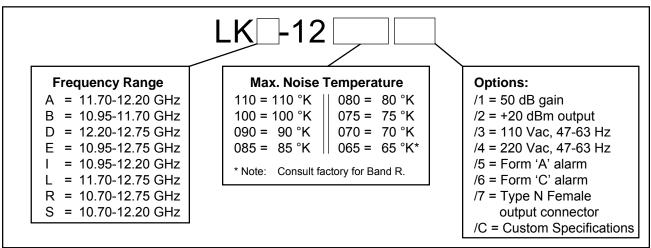
Ku-Band Low Noise Amplifiers

Introduction


MAXTECH LK-12000 series Ku-Band Ultra Low Noise Amplifiers are specially designed for satellite earth station and other telecommunications applications. Utilizing state-ofthe-art HEMT and GaAs FET technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures from 110 °K to 65 °K. All noise temperature specifications are guaranteed over the full bandwidth of the LNA and are verified by cold load testing.

Features

- Noise temperatures to 65 °K
- High Reliability HEMT design
- Input/output isolators
- Reverse polarity protection
- Overvoltage protection
- Wide operating temperature range, -40 °C to +70 °C


Options

- Custom frequency bands
- Redundant configurations (1:1, 1:2)
- Transmit reject filter
- AC power supply
- Form 'A' or Form 'C' alarm

MAXTECH, Inc. Technology for Communications

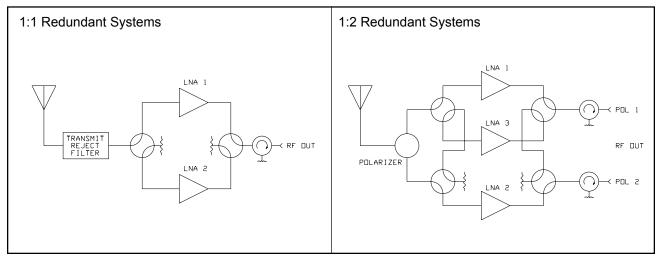
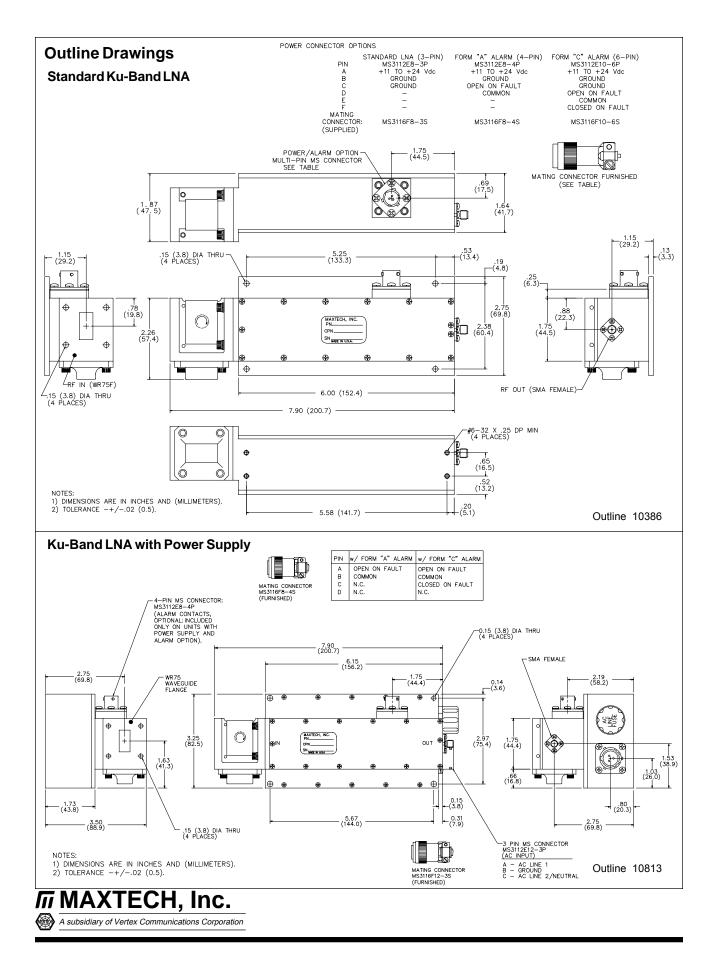

Table 1 — Part Number/Ordering Information

Table 2 — Noise Temperature vs. Ambient Temperature

Noise temperature vs. a temperature can be four the equation:		$\left(\frac{T_2}{T_1}\right)^{1.8}$	where NT_2 = Noise Temperature at T_2 NT_1 = Noise Temperature at T_1 T_2 = Temperature 2 in °K T_1 = Temperature 1 in °K (°K = °C + 273)
For the case where $T_1 = 296 \text{ °K} (+23 \text{ °C})$, the ratio NT_2/NT_1 is shown in the table:	Ambient Temperature T ₂ (°C) 0 +23 +40 +50 +60	Ratio NT ₂ /NT ₁ 0.86 1.00 1.11 1.17 1.24	Example: For model LKE-12100, $NT_1 = 100 \text{ °K at } +23 \text{ °C};$ what is $NT_2 \text{ at } +50 \text{ °C}?$ From the table, $NT_2/NT_1 \text{ at } 50 \text{ °C} = 1.17:$ $NT_2 = 1.17 \text{ x } (100 \text{ °K}) = 117 \text{ °K at } 50 \text{ °C}$

Typical Applications

SPECIFICATIONS


LK-12000 Series

Parameter	Notes	Min	Nom./Typ.ª	Max	Units
Frequency			See Table 1		
Gain	Standard Option 1	60 50	63 53	66 56	dB dB
Gain Flatness	Full Band Per 40 MHz			±0.5 ±0.2	dB dB
VSWR	Input Output		1.20 1.20	1.25 1.50	:1 :1
Noise Temperature ^b	At +23 °C Versus temperature				
Power Output at 1 dB compression	Standard Option 2	+12 +20	+15 +22		dBm dBm
3rd Order Output Intercept Point	Standard Option 2	+22 +30	+25 +32		dBm dBm
Group Delay per 40 MHz	Linear Parabolic Ripple			0.01 0.001 0.1	ns/MHz ns/MHz² ns p-p
AM/PM Conversion	-5 dBm Output			0.05	°/dB
Gain Stability (Constant Temp)	Short Term (10 min) Medium Term (24 hrs) Long Term (1 week)			±0.1 ±0.2 ±0.5	dB dB dB
Gain Stability	Versus temperature		-0.04		dB per °C
Transmit Rejection	13.75-14.5 GHz	30			dB
Max. Input Power	Damage Threshold Desens. Threshold, 13.75-14.5 GHz			0 -20	dBm dBm
Connectors	Input Output Power, Standard ^c	MS	WR75 Cover Flange SMA Female S3112E8-3P (mate sup		
Power Requirements	Voltage Current, Standard Current, with Option 2 Current, with Opt. 5 or 6	11	15 140 270 Additional 30 mA	24 180 300	V mA mA
Operating Temp.		-40		+70	°C
MTBF (MIL-HDBK-217F)	Ground fixed, +40 °C		130,000		hours
	on a line, the Nom./Typ. column is erformance, but are not guarantee		value; otherwise it is a typical	value. Typical	valu es are

b Maximum noise temperature at +23 °C at any frequency in the specified band.

c Power may be supplied either via the RF output connector (cable powered) or via the power connector, user choice.

Specifications are subject to change at MAXTECH's discretion.

